3rd International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design
April 2014, Granada, Spain
Part of evo* 2014
evo*: http://www.evostar.org
----------------------------------------------------------------------------
New this year: Special track on Artificial Neural Network applied
to Music, Sound, Art and Design
----------------------------------------------------------------------------
LEONARDO Special Section
Authors of selected papers will be invited to submit expanded versions of
their work for a planned special section on Evolutionary Art of the MIT
Press journal "Leonardo".
----------------------------------------------------------------------------
Following the success of previous events and the importance of the field of evolutionary and biologically inspired (artificial neural network, swarm, alife) music, sound, art and design, evomusart has become an evo* conference with independent proceedings since 2012. Thus, evomusart 2014 is the twelfth European Event and the third International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design.
The use of biologically inspired techniques for the development of artistic systems is a recent, exciting and significant area of research. There is a growing interest in the application of these techniques in fields such as: visual art and music generation, analysis, and interpretation; sound synthesis; architecture; video; poetry; design; and other creative tasks.
The main goal of evomusart 2014 is to bring together researchers who are using biologically inspired computer techniques for artistic tasks, providing the opportunity to promote, present and discuss ongoing work in the area.
The event will be held in April, 2014 in Granada, Spain, as
part of the evo* event.
Publication Details
Submissions will be rigorously reviewed for scientific and artistic merit.
Accepted papers will be presented orally or as posters at the event and
included in the evomusart proceedings, published by Springer Verlag in a
dedicated volume of the Lecture Notes in Computer Science series. The acceptance
rate at evomusart 2013 was 30.5\% for papers
accepted for oral presentation, or 44.4% for oral and poster presentation
combined. The evomusart 2013 submissions received on average 3.4 reviews
each.
New this year: submitters are strongly encouraged to provide in all papers a link for download of media demonstrating their results, whether music, images, video, or other media types. Links should be anonymised for double-blind review, e.g. using a URL shortening service.
Topics of interest
Submissions should concern the use of biologically inspired computer techniques -- e.g. Evolutionary Computation, Artificial Life, Artificial Neural Networks, Swarm Intelligence, other artificial intelligence techniques -- in the generation, analysis and interpretation of art, music, design, architecture and other artistic fields. Topics of interest include, but are not limited to:
Generation
- Biologically Inspired Design and Art -- Systems that create drawings, images, animations, sculptures, poetry, text, designs, webpages, buildings, etc.;
- Biologically Inspired Sound and Music -- Systems that create musical pieces, sounds, instruments, voices, sound effects, sound analysis, etc.;
- Robotic-Based Evolutionary Art and Music;
- Other related artificial intelligence or generative techniques in the fields of Computer Music, Computer Art, etc.;
Theory
- Computational Aesthetics, Experimental Aesthetics; Emotional Response, Surprise, Novelty;
- Representation techniques;
- Surveys of the current state-of-the-art in the area; identification of weaknesses and strengths; comparative analysis and classification;
- Validation methodologies;
- Studies on the applicability of these techniques to related areas;
- New models designed to promote the creative potential of biologically inspired computation;
Computer Aided Creativity and computational creativity
- Systems in which biologically inspired computation is used to promote the creativity of a human user;
- New ways of integrating the user in the evolutionary cycle;
- Analysis and evaluation of: the artistic potential of biologically inspired art and music; the artistic processes inherent to these approaches; the resulting artefacts;
- Collaborative distributed artificial art environments;
Automation
- Techniques for automatic fitness assignment
- Systems in which an analysis or interpretation of the artworks is used in conjunction with biologically inspired techniques to produce novel objects;
- Systems that resort to biologically inspired computation to perform the analysis of image, music, sound, sculpture, or some other types of artistic object.
Important Dates
Submission deadline: 1 November 2013 11 November 2013
Notification: 06 January 2014
Camera ready: 01 February 2014
Evo*: 23-25 April 2014
Additional information and submission details
Submit your manuscript, at most 12 A4 pages long, in Springer LNCS format (instructions downloadable from http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0) no later than November 11th, 2013.
Submission link: http://myreview.csregistry.org/evomusart14
page limit: 12 pages
The reviewing process will be double-blind; please omit information about the authors in the submitted paper.
Programme committee
- Adrian Carballal,University of A Coruna,Spain
- Alain Lioret,Paris 8 University,France
- Alan Dorin,Monash University,Australia
- Alejandro Pazos,University of A Coruna,Spain
- Alice Eldridge,Monash University,Australia
- Amilcar Cardoso,University of Coimbra,Portugal
- Amy K. Hoover,University of Central Florida,USA
- Andrew Brown,Griffith University,Australia
- Andrew Gildfind,Google, Inc.,Australia
- Andrew Horner,University of Science & Technology,Hong Kong
- Anna Ursyn,University of Northern Colorado,USA
- Antonino Santos,University of A Coruna,Spain
- Antonios Liapis,IT University of Copenhagen ,Denmark
- Arne Eigenfeldt,Simon Fraser University,Canada
- Artemis Sanchez Moroni,Renato Archer Research Center,Brazil
- Benjamin Schroeder,Ohio State University,USA
- Benjamin Smith,Indianapolis University, Purdue University,Indianapolis,USA
- Bill Manaris,College of Charleston,USA
- Brian Ross,Brock University,Canada
- Carlos Grilo,Instituto Politécnico de Leiria,Portugal
- Christian Jacob,University of Calgary,Canada
- Colin Johnson,University of Kent,UK
- Dan Ashlock,University of Guelph,Canada
- Dan Costelloe,Independent Researcher (Solace One Ltd),Ireland
- Dan Ventura,Brigham Young University,USA
- Daniel Bisig,University of Zurich,Switzerland
- Daniel Jones,Goldsmiths College, University of London,UK
- Douglas Repetto,Columbia University,USA
- Eduardo Miranda,University of Plymouth,UK
- Eelco den Heijer,Vrije Universiteit Amsterdam,Netherlands
- Eleonora Bilotta ,University of Calabria,Italy
- Francois Pachet,Sony CSL Paris,France
- Gary Greenfield,University of Richmond,USA
- Gary Nelson,Oerlin College,USA
- Hans Dehlinger,Independent Artist,Germany
- Hernán Kerlleñevich,National University of Quilmes,Argentina
- J. E. Rowe,University of Birmingham,UK
- Jane Prophet,Independent Artist,UK
- Jate Reed,Imperial College,UK
- John Collomosse,University of Surrey,UK
- Jon McCormack,Monash University,Australia
- Jonathan Byrne,University College Dublin,Ireland
- Jonathan Eisenmann,Ohio State University,USA
- José Fornari,NICS/Unicamp,Brazil
- Marcelo Freitas Caetano,IRCAM,France
- Marcos Nadal,University of Illes Balears,Spain
- Matthew Lewis,Ohio State University,USA
- Mauro Annunziato,Plancton Art Studio,Italy
- Michael O’Neill,University College Dublin,Ireland
- Nicolas Monmarché,University of Tours,France
- Pablo Gervás,Universidad Complutense de Madrid,Spain
- Palle Dahlstedt,Göteborg University,Sweden
- Patrick Janssen ,National University of Singapure,Singapure
- Paulo Urbano,Universidade de Lisboa,Portugal
- Pedro Cruz,University of Coimbra,Portugal
- Penousal Machado,University of Coimbra,Portugal
- Peter Bentley,University College London ,UK
- Peter Cariani,University of Binghamton,USA
- Philip Galanter,Texas A&M College of Architecture,USA
- Philippe Pasquier,Simon Fraser University,Canada
- Rafael Ramirez,Pompeu Fabra University,Spain
- Roger Malina,International Society for the Arts, Sciences and Technology,USA
- Roisin Loughran,University of Limerick,Ireland
- Ruli Manurung,University of Indonesia,Indonesia
- Scott Draves,Independent Artist,USA
- Somnuk Phon-Amnuaisuk,Brunei Institute of Technology,Malaysia
- Stephen Todd,IBM,UK
- Takashi Ikegami,Tokyo Institute of Technology,Japan
- Tim Blackwell,Goldsmiths College, University of London,UK
- Troy Innocent,Monash University,Australia
- Usman Haque,Haque Design + Research Ltd,UK/Pakistan
- Vic Ciesielski,RMIT,Australia
- Yang Li,University of Science and Technology Beijing,China
EvoMUSART Conference chairs
Juan Romero
University of A Coruna, Spain
jj(at)udc.es
James McDermott
University College Dublin, Ireland
jmmcd(at)jmmcd.net
EvoMUSART Publication chair
Joao Correia
University of Coimbra
jncor(at)dei.uc.pt
Wed 1745-1900 EvoMUSART posters
An Indirect Fitness Scheme for Automated Evolution of Aesthetic
Images Gary Greenfield
Recently, the question of whether artifacts obtained from a generative art
system can be judged as creative based on the characteristics of their offspring
has received considerable attention. Here, we focus on the question of whether
aesthetic images can be evolved by considering characteristics of their
offspring. We introduce a formal model for designing fitness functions for
use in automated evolution of aesthetic images whereby genotypes are evaluated
relative to certain characteristics of their offspring. We describe the
results of an experiment using such an indirect fitness scheme that promotes
offspring diversity in order to help select for parent phenotypes with desired
symmetry and complexity properties. We use as our image generation platform
a variant of the Sims' classical Evolving Expressions generative art system.
Genomic: Evolving Sound Treatments Using Genetic Algorithms
Thomas Stoll
There are many systems for the evolution of creative musical material, that
create and/or manipulate musical score data or synthesis parameters with
a variety of techniques. This paper aims to add the technique of corpus-based
sound sampling and processing to the list of applications used in conjunction
with genetic algorithms. Genomic, a simple system for evolving sound treatment
parameters, is presented, along with two simple use cases. Finally, a more
complex process is outlined where sound treatment parameters are evolved
and stored in a database with associated metadata for further organization
and compositional use.
Size Does Not Matter: Evolving Parameters for a Cayley Graph Visualiser
using 64 bits Miguel Nicolau, Dan Costelloe
In this paper, an Interactive Evolutionary system is described, which generates
visually appealing 3D projections of mathematical constructs. This system
uses a combination of the Grammatical Evolution paradigm and Jenn3d, a visualiser
of Cayley graphs of finite Coxeter groups. A very compact representation
is used for the genotype strings, using only 64 bits. The resulting visualisations,
albeit somewhat restricted, still exhibit a large degree of complexity and
evolvability, and are well representative of the domain.
Thursday 24 April
Thurs 1135-1315 Session 1: Aesthetics
Chair: Jon McCormack
Feature Construction using Genetic Programming for Classification
of Images by Aesthetic Value Andrew Bishop, Vic Ciesielski
and Karen Trist
Classification or rating of images according to their aesthetic quality
has applications in areas such as image search, compression and photography.
It requires the construction of features that are predictive of the aesthetic
quality of an image. Constructing features manually for aesthetics prediction
is challenging. We propose an approach to improve on manually designed features
by constructing them using genetic programming and image processing operations
implemented using OpenCV. We show that this approach can produce features
that perform well. Classification accuracies of up to 81% on photographs
and 92% on computationally generated images have been achieved. Both of
these results significantly improve on existing manually designed features.
A complexity approach for identifying aesthetic composite landscapes
Adrian Carballal, Rebeca Perez, Antonino Santos and Luz Castro
The present paper describes a series of features related to complexity which
may allow to estimate the complexity of an image as a whole, of all the
elements integrating it and of those which are its focus of attention. Using
a neural network to create a classifier based on those features an accuracy
over 85% in an aesthetic composition binary classification task is achieved.
The obtained network seems to be useful for the purpose of assessing the
Aesthetic Composition of landscapes. It could be used as part of a media
device for facilitating the creation of images or videos with a more professional
aesthetic composition.
Authorship and aesthetics experiments. Comparison of results between
Human and Computational Systems Luz Castro, Rebeca Perez, Antonino
Santos and Adrian Carballal
This paper presents the results of two experiments comparing the functioning
of a computational system and a group of humans when performing tasks related
to art and aesthetics. The first experiment consists of the identification
of a painting, while the second one uses the Maitland Graves's aesthetic
appreciation test. The proposed system employs a series of metrics based
on complexity estimators and low level features. These metrics feed a learning
system using neural networks. The computational approach achieves similar
results to those achieved by humans, thus suggesting that the system captures
some of the artistic style and aesthetics features which are relevant to
the experiments performed.
1430-1610 Session 2: Interaction
Chair: James McDermott
Probabilistic Decision Making for Interactive Evolution with Sensitivity
Analysis (EvoMUSART best paper candidate) Jonathan Eisenmann,
Matthew Lewis and Rick Parent
Recent research in the area of evolutionary algorithms and interactive design
tools for ideation has investigated how sensitivity analysis can be used
to enable region-of-interest selection on design candidates. Even though
it provides more precise control over the evolutionary search to the designer,
the existing methodology for this enhancement to evolutionary algorithms
does not make full use of the information provided by sensitivity analysis
and may lead to premature convergence. In this paper, we describe the shortcomings
of previous research on this topic and introduce an approach that mitigates
the problem of early convergence. A discussion of the trade-offs of different
approaches to sensitivity analysis is provided as well as a demonstration
of this new technique on a parametric model built for character design ideation.
An Interface for Fitness Function Design
(EvoMUSART best paper candidate) Penousal Machado, Tiago Martins, Hugo
Amaro and Pedro H. Abreu
Fitness assignment is one of the biggest challenges in evolutionary art.
Interactive evolutionary computation approaches put a significant burden
on the user, leading to human fatigue. On the other hand, autonomous evolutionary
art systems usually fail to give the users the opportunity to express and
convey their artistic goals and preferences. Our approach empowers the users
by allowing them to express their intentions through the design of fitness
functions. We present a novel responsive interface for designing fitness
function in the scope of evolutionary ant paintings. Once the evolutionary
runs are concluded, further control is given to the users by allowing them
to specify the rendering details of selected pieces. The analysis of the
experimental results highlights how fitness function design influences the
outcomes of the evolutionary runs, conveying the intentions of the user
and enabling the evolution of a wide variety of images.
1630-1810 Session 3: Miscellaneous
Chair: Gary Greenfield
Evolving an Aircraft Using a Parametric Design System
Jonathan Byrne, Philip Cardiff, Anthony Brabazon and Michael O'Neill
Traditional CAD tools generate a static solution to a design problem. Parametric
systems allow the user to explore many variations on that design theme.
Such systems make the computer a generative design tool and are already
used extensively as a rapid prototyping technique in architecture and aeronautics.
Combining a design generation tool with an evolutionary algorithm provides
a methodology for optimising designs. This works uses NASA's parametric
aircraft design tool (OpenVSP) and an evolutionary algorithm to evolve a
range of aircraft that maximise lift and reduce drag while remaining within
the framework of the original design. Our approach allows the designer to
automatically optimise their chosen design and to generate models with improved
aerodynamic efficiency.
A Novelty Search and Power-Law-Based Genetic Algorithm for Exploring
Harmonic Spaces in J.S. Bach Chorales Bill Manaris, David Johnson
and Yiorgos Vassilandonakis
We present a novel, real-time system, called Harmonic Navigator, for exploring
the harmonic space in J.S. Bach Chorales. This corpus-based environment
explores trajectories through harmonic space. It supports visual exploration
and navigation of harmonic transition probabilities through interactive
gesture control. These probabilities are computed from musical corpora (in
MIDI format). Herein we utilize the 371 J.S. Bach Chorales of the
Riemenschneider edition. Our system utilizes a hybrid novelty search approach
combined with power-law metrics for evaluating fitness of individuals, as
a search termination criterion. We explore how novelty search can aid in
the discovery of new harmonic progressions through this space as represented
by a Markov model capturing probabilities of transitions between harmonies.
Our results demonstrate that the 371 Bach Chorale harmonic space is rich
with novel aesthetic possibilities, possibilities that the grand master
himself never realized.
Balancing Act: variation and utility in Evolutionary Art Jon McCormack
Evolutionary Art typically involves a tradeoff between the size and flexibility of genotype space and its mapping to an expressive phenotype space. Ideally we would like a genotypic representation that is terse but expressive, that is, we want to maximise the useful variations the genotype is capable of expressing in phenotype space. Terseness is necessary to minimise the size of the overall search space, and expressiveness can be loosely interpreted as phenotypes that are useful (of high fitness) and diverse (in feature space). In this paper I describe a system that attempts to maximise this ratio between terseness and expressiveness. The system uses a binary string up to any maximum length as the genotype. The genotype string is interpreted as building instructions for a graph, similar to the cellular programming techniques used to evolve artificial neural networks. The graph is then interpreted as a form-building automaton that can construct animated 3-dimensional forms of arbitrary complexity. In the test case the requirement for expressiveness is that the resultant form must have recognisable biomorphic properties and that every possible genotype must fulfil this condition. After much experimentation, a number of constraints in the mapping technique were devised to satisfy this condition. These include a special set of geometric building operators that take into account morphological properties of the generated form. These methods were used in the evolutionary artwork 'Codeform', developed for the Ars Electronica museum. The work generated evolved virtual creatures based on genomes acquired from the QR codes on museum visitor's entry tickets.